57 research outputs found

    Le transfert d'échelle

    Get PDF

    Computer construction of species richness maps: Testing a new type of multifractal algorithm

    Get PDF
    We show how a new theoretical multifractal model provides means to generate virtual maps of highly variable spatial distributions of species richness. It should allow for various computer experiments in landscape ecology and the study of biodiversity. In this paper, the explicit distribution of species-representative individuals over a large range of scale leads to an original algorithm for the estimation of the Renyi dimensions of a multifractal measure. The method is successfully tested for simulated (S, A) data sets, where the variable S is simply the number of species found in a given domain of area A. This easy tool will help to characterize the spatial variability of multiscale density distributions in many fields, requiring only randomly sampled data at different locations and scales

    A Program for Fractal and Multifractal Analysis of Two-Dimensional Binary Images. Computer Algorithms versus Mathematical Theory.

    Full text link
    In this paper we present a tool to carry out the multifractal analysis of binary, two-dimensional images through the calculation of the Rényi D(q) dimensions and associated statistical regressions. The estimation of a (mono)fractal dimension corresponds to the special case where the moment order is q = 0

    Multifractal analysis of the pore- and solid-phases in binary two-dimensional images of natural porous structures

    Full text link
    We use multifractal analysis (MFA) to investigate how the Rényi dimensions of the solid mass and the pore space in porous structures are related to each other. To our knowledge, there is no investigation about the relationship of Rényi or generalized dimensions of two phases of the same structure

    Models of the water retention curve for soils with a fractal pore size distribution

    Get PDF
    The relationship between water content and water potential for a soil is termed its water retention curve. This basic hydraulic property is closely related to the soil pore size distribution, for which it serves as a conventional method of measurement. In this paper a general model of the water retention curve is derived for soil whose pore size distribution is fractal in the sense of the Mandelbrot number-size distribution. This model, which contains two adjustable parameters (the fractal dimension and the upper limiting value of the fractal porosity) is shown to include other fractal approaches to the water retention curve as special cases. Application of the general model to a number of published data sets covering a broad range of soil texture indicated that unique, independent values of the two adjustable parameters may be difficult to obtain by statistical analysis of water retention data for a given soil. Discrimination among different fractal approaches thus will require water retention data of high density and precision. (Résumé d'auteur

    Topological invariance and spatial scaling of surface roughness in two highly eroded zones of Mexico: a comparative study

    Get PDF
    The Fractal Image Informatics toolbox (Oleschko et al., 2008 a; Torres-Argüelles et al., 2010) was applied to extract, classify and model the topological structure and dynamics of surface roughness in two highly eroded catchments of Mexico. Both areas are affected by gully erosion (Sidorchuk, 2005) and characterized by avalanche-like matter transport. Five contrasting morphological patterns were distinguished across the slope of the bare eroded surface of Faeozem (Queretaro State) while only one (apparently independent on the slope) roughness pattern was documented for Andosol (Michoacan State). We called these patterns ?the roughness clusters? and compared them in terms of metrizability, continuity, compactness, topological connectedness (global and local) and invariance, separability, and degree of ramification (Weyl, 1937). All mentioned topological measurands were correlated with the variance, skewness and kurtosis of the gray-level distribution of digital images. The morphology0 spatial dynamics of roughness clusters was measured and mapped with high precision in terms of fractal descriptors. The Hurst exponent was especially suitable to distinguish between the structure of ?turtle shell? and ?ramification? patterns (sediment producing zone A of the slope); as well as ?honeycomb? (sediment transport zone B) and ?dinosaur steps? and ?corals? (sediment deposition zone C) roughness clusters. Some other structural attributes of studied patterns were also statistically different and correlated with the variance, skewness and kurtosis of gray distribution of multiscale digital images. The scale invariance of classified roughness patterns was documented inside the range of five image resolutions. We conjectured that the geometrization of erosion patterns in terms of roughness clustering might benefit the most semi-quantitative models developed for erosion and sediment yield assessments (de Vente and Poesen, 2005)
    • …
    corecore